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ABSTRACT

The increasing fuel price has led to high operational cost and therefore, advanced optimal dispatch schemes
need to be developed to reduce the operational cost while maintaining the stability of grid. This study applies an
improved heuristic approach, the improved Artificial Bee Colony (IABC) to optimal power flow (OPF) problem
in electric power grids. Although original ABC has provided robust solutions for a range of problems, such as the
university timetabling, training neural networks and optimal distributed generation allocation, its poor
exploitation often causes solutions to be trapped in local minima. Therefore, in order to adjust the exploitation
and exploration of ABC, the IABC based on the orthogonal learning is proposed. Orthogonal learning is a
strategy to predict the best combination of two solution vectors based on limited trials instead of exhaustive
trials, and to conduct deep search in the solution space. To assess the proposed method, two fuel cost objective
functions with high non-linearity and non-convexity are selected for the OPF problem. The proposed IABC is
verified by IEEE-30 and 118 bus test systems. In all case studies, the IABC has shown to consistently achieve a
lower cost with smaller deviation over multiple runs than other modern heuristic optimization techniques. For
example, the quadratic fuel cost with valve effect found by IABC for 30 bus system is 919.567 $/hour, saving
4.2% of original cost, with 0.666 standard deviation. Therefore, IABC can efficiently generate high quality
solutions to nonlinear, nonconvex and mixed integer problems.

1. Introduction

In electric power grids, the optimal power flow (OPF) problem is of
great importance for power system operators (SO) to maintain a
reliable and economic power system operation. The main goals of
OPF are to optimize the fuel cost, power losses, voltage stability, and
emission cost, while satisfying system constraints. Traditional OPF
involving conventional fossil-fuel power plants is a highly nonlinear,
nonconvex and mixed integer problem (Adaryani & Karami, 2013;
Bai, Abedi, & Kwang, 2016). For example, the cost function of a fossil-
fuel power plant can be quadratic or in other nonlinear form when the
valve effect is considered. An overview of OPF can be found in (Cain,
O'Neill, & Castillo, 2012; Gan, Thomas, & Zimerman, 2000; Momoh,
Koessler, Bond, & Stott, 1997).

In all, the OPF is a non-linear, non-convex optimization problem
due to the cost functions and constraints of a large number of power
plants integrated into the power grid. A wide range of traditional
optimization techniques such as quadratic programming, nonlinear
programming, interior point method, mixed integer programming
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(Alsac & Stott, 1974; Burchett, Happ, & Vierath, 1984; Hua, Sasaki,
Kubokawa, & Yokoyama, 1998; Shoults & Sun, 1982) have already
been implemented in this field. Some of the techniques have even been
adopted by industry because of their fast convergence and robustness.
However, those approaches linearize the OPF problem first, and fail to
consider the non-smooth, non-differentiable and non-convex proper-
ties of the system.

To circumvent such problem, various modern heuristic optimiza-
tion algorithms have been developed for power system optimization
(Lee & El-Sharkawi, 2008) because such techniques tackle the original
problem without modifying it. In general, heuristic algorithms are
developed based on two categories which are single-solution based and
population based approaches. Several examples of single-solution
based approach are tabu search and simulated annealing (Abido,
2002; Soares, Vale, Morais, & Faria, 2011), while population based
approaches include particle swarm optimization (PSO), gravitational
search algorithm (GSA), differential evolution (DE), genetic algorithm
(GA), harmony search, and artificial bee colony (Abou, A, Abido, &
Spea, 2010; Adaryani & Karami, 2013; Bakirtzis, Biskas, Zoumas, &
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Petridis, 2002; Park, Jeong, Shin, & Lee, 2010; Sivasubramani &
Swarup, 2011). In addition to these original heuristic methods,
enhanced approaches based on the original ones have been developed
for more efficient search. The authors in (Bakirtzis et al., 2002)
improved basic GA to solve the OPF by introducing an advanced and
problem-specific genetic operator. Such operator includes the fitness
scaling and elitism features, and the algorithm was tested on IEEE-30
and IEEE RTS-96 system. Reference (Park et al., 2010) proposed an
improved PSO to tackle the problem considering the valve point effect
on the regular quadratic fuel cost function.

This study focuses on the artificial bee colony (ABC) method
reported by Karaboga in 2005 (Karaboga, 2005). The ABC falls into
the category of population-based optimization algorithms which have
been demonstrated competitive to other methods because the ABC
controls fewer parameters and is robust (Karaboga & Akay, 2009; Pan,
Tasgetiren, Suganthan, & Chua, 2011; Zhan, Zhang, Li, & Shi, 2011).
The balance between exploration and exploitation is an important issue
for modern heuristic optimization techniques. The former is the
capability of investigating various unknown regions in search space,
and the latter is the ability to make the best decision given current
information (Crepinsek, Liu, & Mernik, 2013). In reality, the two
aspects are contradictory to each other and therefore a well balanced
approach needs to be found. The search process of ABC performs well
for exploration because the searching scheme is random enough for
exploration; however, it performs poorly for exploitation and thus
causes poor convergence (Gao, Liu, & Huang, 2013).

In order to enhance the ability of exploitation, researchers proposed
a search mechanism which utilizes the information of current best
solution inspired by differential evolution (DE). In such search
mechanism, onlooker bees only search around the best solution formed
in the previous iteration according to a predefined probability (Gao &
Liu, 2012). Gao and Liu (2011) improved the initialization phase in
that the chaotic system was utilized, and modified the search mechan-
ism using the information of current best solution. Such work is able to
improve the exploitation.

The search equation of the original ABC randomly selects a
dimension of the solution vector and performs mutation with the same
dimension of another solution vector. Here the dimension refers to the
number of control variables in a solution vector. For example, if the
solution vector consists of 24 control variables, it is interpreted as 24
dimensions in such solution vector. However, this search scheme falls
short of effectiveness because one solution vector may contain useful
information on some dimensions while the other solution may contain
good information on its other dimensions. In other words, merely
concentrating on a specific dimension of the solution will be likely to
lose other useful information for solution improvement. Therefore, in
order to update the solution considering all the information of each
dimension from two candidate solutions, inspired by the orthogonal
experimental design (OED) Gao (2013) proposed an orthogonal
learning (OL) technique to obtain better exploitation. The OED is
utilized to determine the best combination out of two vectors via a
relatively small number of experimental tests instead of exhaustive
trials (Zhan et al., 2011; Zhang & Leung, 1999). The OL strategy is
implemented with the help of OED, and details of such strategy will be
described later.

In all, the previous works on OPF have either fallen short of the
ability to tackle original problem without approximation or the balance
in exploration and exploitation in modern heuristic techniques. Thus
far, to the best knowledge of authors, the application of ABC based on
orthogonal learning on power system operation problems has not been
documented in the literature yet. Here, we first propose this method to
handle the OPF problem, which is to be our main contribution. With
that, better optimization solution can be found by improving the
balance in exploration and exploitation. The performance was tested
on modified IEEE 30 and 118 bus test systems and comparative
analysis was conducted with other methods. For the case of minimizing
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fuel cost considering valve effect, the total cost can be reduced by 4.2%
compared with the original ABC. Power system is a highly non-linear
system and therefore many control and optimization become hard-to-
solve problems without linearizing system. IABC is to possibly further
improve the solutions of those problems such as controlling the
Flexible Alternating Current Transmission System (FACTS) devices,
optimizing the placement of distributed generators.

2. Problem formulation
2.1. Traditional OPF problem

The objective of traditional optimal power flow (OPF) is to
minimize fuel cost for power generation by determining a setting of
control variables while satisfying network constraints and operational
requirements. Its mathematical formulation is:

Min f (x, u) (@)
s.t. glx,u)=0 2
h(x,u) <0 3)

where vector u represents control variables and it includes generator
real power Pg except at slack bus, generator bus voltage Vg,
transformer tap TP (discrete variable), and shunt compensator Q¢
(discrete variable) at selected buses; vector x represents state variables
and it includes real power Ps; at slack bus, voltages V7, at load bus,
reactive power Qg at generator bus, and loadings Sy of transmission
lines.

The objective functions f from (1) considered in the study are the
real power losses and total fuel cost. Two different fuel cost functions
are considered here, quadratic cost functions with and without the
valve point loading (Park et al., 2010):

fi = @iPG + biPsi + ¢; 4

£ = aiPg + biPg; + ¢; + |d; sin(e; (P, min — P6i))| 5)

where a;, b;, c;, e;, and Pg; denote for the fuel cost coefficients and real
power of the i-th unit. Fig. 1 shows the effect of valve point loading on a
quadratic cost function. In a real power plant, steam is controlled by
valves to enter the turbine through separate nozzle groups. The best
efficiency is achieved when each nozzle group operates at full output
(Decker & Brooks, 1958). Therefore in order to achieve highest
possible efficiency for given output, valves are opened in sequence
and this results in a rippled cost curve, as shown in Fig. 1.

Resistance and reactance in transmission lines cause real power
loss, and minimizing real power loss is one of the major concerns for
system operation. The mathematical formation of the objective func-
tion is shown as follows:

Ny

Y
2 4 42

k=1 Tk k

= V2 + VI =2ViV,cos(6; — 6)] Vi,V

(6)

where N; is the number of transmission lines, rx and x, represents the
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Fig. 1. Effect of valve point loading on a quadratic cost function.
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resistance and reactance of the transmission line k that links bus 7 and
J; Vi, Vj, 6; and §; are the voltage magnitudes and angles at bus 7 and j,
respectively. In all, f7, f> and f3 are the three cost functions considered
for case studies.

The equality constraint (2) is the AC power flow balance equation at
each bus representing that the power flowing into that specific bus is
equal to the power flowing out, and is defined as:

B= V. XL V¥, cos(3i — & = 6;)

0=V X Vi¥ysin@i— 6 —0) ViVj %
where N is the total number of buses, P; and Q; are the injected real
and reactive power of bus #; §; and §; are the angle at bus i and j; Y;; and
0;; are the Y-bus admittance matrix elements.

Inequality constraints h in (3) are listed as generator limits, tap
position of transformers, shunt capacitor constraints, security con-
straints, load bus voltage and transmission line flows.

2.1.1. Generator limits

PGi, max S PGi S PGi, max
QGi, max < QGi < QGi. max
VGi, max < VGi < VGi, max

< iENG

®

where Ng is the number of generators, and the minimum/
maximum real, reactive power and voltage limits of unit i are denoted
by PGi, min> PGi, max; QGi, min> QGi, max VGi, min> and VGi, max-

2.1.2. Tap positions of transformers

< i €Ny

TB, min < TPI S TPI, max (9)

where N is the number of tap-changing transformers; TP; 1nin,
and TP;, ;ax are the limits of transformers.

2.1.3. Shunt capacitors constraints

Q('i, min S Qci S Q('i, max i€ /V( (10)

where N, is the number of shunt capacitors; Qc;, ;nin and Qci, max
are the limits of shunt capacitors.

2.1.4. Security constraints on the limits of load bus voltage and
transmission line flows

Vii, min £ Vi £ Vi, max
SLi S SLi, max i€ 1\/[

i€ Ny
an

where Ny, is the number of PQ bus, Vi;, yin, Vi, max and Sg;,
max are the limits of voltage magnitudes at PQ buses and maximum
line flow of transmission line i respectively. There are three types of
buses in power system: slack bus, PV bus and PQ bus. Slack bus is to
balance the real and reactive power in the system while performing
load flow calculations, it is also known as reference bus. PV bus is the
node where real power P and voltage magnitude V are specified, it is
also known as generator bus. PQ bus is the node where real and
reactive power is specified, known as load bus.

2.2. Incorporation of inequality constraints

The control variables (real power generation of PV buses, voltage at
all generator buses, transformer tap settings, and shunt compensators)
are randomly initialized within the feasible domain, while a penalty
function is introduced in order to force the state variables into the
direction of the feasible domain as well. In other words, penalty
functions are utilized to handle the inequality constraints. The penalty
cost function is defined as:
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if Xi > Xi, max
if X < Xi, min
l.f Xi, min <x < Xi, max

(X,' - X max)2
(¥, min — X;)?

0

px;) =
12)

where p is the penalty function of state variable x; at bus i. The penalty
cost increases with a quadratic form when state variables are exceeding
the limits and the cost is zero if the constraints are not violated. For
example, if one of the PQ bus voltages exceeds the limit, a certain
amount of penalty will be added, which leads to the increase of total
cost, and eventually this solution will be abandoned.

Thus, the augmented objective function by adding the penalty
function of the PQ bus voltage, reactive power generation, slack bus,
and transmission line capacity is described as:

Npg N

> p(Vi) + G Y p(S)

i=1

Ne
F=f+CpF) +C; ), pQa) + C,

i=1 (13)

i=1

where f'is the original fuel cost function (f7, fo, or f3 in this paper), C,,,
Cg C, and Cs respectively denote penalty factors of real power
generation of slack bus, reactive power output of the generator buses,
and PQ bus voltage and transmission line capacity.

3. Design iabc based on orthogonal learning
3.1. Original ABC algorithm

In the original ABC by Karaboga, initial artificial bees are spread
out randomly in a multidimensional search space. Each artificial bee
has the ability to store current information and communicate with
neighbours. Mimicking the foraging behaviours of natural honey bee
swarms, ABC has been addressed in various applications (Fong,
Asmuni, & McCollum, 2015; Karaboga & Akay, 2012; Karaboga,
Alay, & Ozturk, 2007; Singh, 2009).

There are employed bees, onlookers, and scouts in the population.
The merit of population-based algorithm is that every agent works
collaboratively to search for solutions. Thus in ABC each artificial bee
communicates and cooperates with one another to explore food sources
by evaluating the quality of the food sources, called nectars. Employed
bees first share nectars information to onlooker bees. Then, onlooker
bees find food sources based on the nectars information and more
profitable sources are more likely to be chosen by onlookers. If a source
is not worth exploiting anymore, the source will be abandoned by bees
and the employed bee of that source will become a scout to randomly
search the environment.

When ABC is applied to the optimal power flow problem, the food
source means feasible solutions, nectars mean the fitness values of cost
functions, and more profitable sources mean the solutions that
correspond with high fitness values. The process of onlooker bees
finding more profitable sources is actually to update the current
solution to another candidate solution.

At initialization, each solution vector X; = {X; 1,X; ,....,.X; p} is
formed randomly within the limits of the control variables as follows:

Xi i,j min + rand(O, 1) X (Xi,j max — Xi,j min) (14)

=

where X;; ,nin and X;; ;max are the lower and upper bounds for
dimension j; i is from 1 to SN, and j is a random number from 1 to D,
and SN is the number of employed bees and onlooker bees, D is the
number of control variables and rand(0,1) is a uniformly distributed
random number in (0,1).

On employed bee phase, each bee searches for rich artificial food
sources via updating current solutions based on their neighbourhood's
information and assess the nectar of new solutions. The search
equation which is adopted to update a candidate solution V; is defined
as:

Vij=Xij + Dij X (Xij — Xij) (15)
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Table 1
(Zhan et al., 2011) Chemical reaction experiment.

Factors

Levels A Temp. °C B Oxygen (cm®) C Water (%)
1L1 80 90 5

212 85 120 6

3L3 90 150 7

where k is an integer different from i, uniformly chosen from [1, SN],
®;; is a random number from [-1,1]. Such searching scheme is
random enough for exploration. If the updated solution has higher
fitness value than the old one, employed bee will memorize the new
solution and discard the old one; otherwise they will keep the old
solutions. This particular process is called ‘greedy selection’. As
mentioned previously, the search scheme (15) of basic ABC only
focuses on one dimension of the solution (j is a randomly selected
dimension) to update the food source, which leads to the deficiency of
exploiting the solution space, while other dimensions may contain good
information for improving food sources as well.

When all the employed bees finish their updating process, on looker
bees obtain the fitness information of food from the employed bees.
The onlooker bees will continue exploiting for good food source
according to the probability which is proportional to each solution's
quality. The process of choosing food by onlooker bees is based on a
scheme called roulette wheel selection, which is similar to the genetic
algorithm. The roulette wheel selection scheme, as defined in the
following, is adopted to mimic the fact that onlooker bees tend to
update the food sources which have higher nectar:

fiti
SN

2 i

j=1 (16)

P=

where fit; and P; are the fitness value and probability associated with
solution i, respectively. By adopting such a scheme, solutions with
higher nectar will be assigned with higher probability and in turn will
have higher chance to be selected by onlooker bees. The onlooker bee
updates the selected solution using (15) as the employed bees do and
memorize the solution by greedy selection. This process will continue
until every onlooker bee finishes its search.

After a predefined number of searching cycles, food sources become
exhausted (inactive solution) if their quality could not be improved
anymore, then the employed bee will become a scout bee to start a

Table 2
Best combination levels BY OED.
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random direction to search for new food source. This process is to
avoid local optima. In the original ABC, only one scout in each cycle is
allowed to occur (Karaboga, 2005). After finding a new food source, the
scout bee will turn itself back to employed bee.

Even though the basic ABC has proven its robustness to various
applications, however like many metaheuristic techniques, there are
still some identified weaknesses in the balance of exploitation and
exploration (Gao & Liu, 2011, 2012; Zhu & Kwong, 2010). In reality,
the exploitation and exploration is in contradiction and the key for
improving the solution of optimization problems is to balance exploita-
tion and exploration (Al-Betar, Khader, & Zaman, 2012). The defi-
ciency of basic ABC is inherited from each phase and explained as
following: in the employed bee phase, the update of current solution is
based on neighbourhood’ search which lead to poor exploitation ability
because of the limited information that neighbourhood can provide.
The same issue arises to the onlooker bee phase because the same
updating scheme is utilized. In addition, the roulette wheel selection
scheme may lead to imbalance between exploitation and exploration
because this scheme merely emphasizes on exploiting the solutions
with high nectars; however, those with low nectars may also contain
useful information to improve solutions. Lastly, in the scout bee phase,
inactive food sources will be abandoned and the scout will search a new
food source to replace the abandoned one randomly. This can help
avoid local minimal and yet the random search of new food will further
decrease the exploitation and convergence speed.

3.2. Orthogonal learning strategy

The OL method, which is analogous to orthogonal experimental
design (OED), can obtain the best candidate solution with few
searching combinations. The OED was first introduced by R. A.
Fisher in the 1920's to study the effect of multi-factors to the
experimental output. As a powerful statistical tool, the OED was
utilized to discover how much rain, water, fertilizer, sunshine, etc.,
were required to produce the best crop (Roy, 2011). To illustrate the
concept of OED the following simple chemical reaction experiment is
considered as shown in Table 1 (Zhan et al., 2011).

In this experiment, there are three factors: temperature (A),
amount of Oxygen (B) and percentage of water (C) determining a
chemical conversion rate. In addition, each factor contains three levels.
For instance, the water can be 5%, 6%, or 7%. Thus there are 3°=27
total number of combinations that need to be experimented to find the
best conversion rate. However, with the help of OED, the best
combination can be predicted by only testing few representative
combinations, thus reducing total testing cost. The following describes

Comb. A: Temp. (°C) B: Oxygen (em®) C: Water (%) Results
(reaction rate)
Cbl (1) 80 (1) 90 5 f7=31
Cb2 (1) 80 (2) 120 26 f2=54
Cb3 (1) 80 (3) 150 3)7 f3=38
Cb4 (2) 85 (1) 90 26 f4=53
Cb5 (2) 85 (2) 120 3)7 f5=49
Cb6 (2) 85 (3) 150 s fe=42
Cb7 (3) 90 (1) 90 3)7 f=57
Cb8 (3) 90 (2) 120 15 fe=62
Cb9 (3) 90 (3) 150 @26 fo=64
levels Factor Analysis
L1 Ha1=(f1+f=>+f3)/3=41 Hpi=(f1+f4+f>)/3=47 Hei=(f1+f6+fs)/3=45
L2 Hao=(f4+f5+fs)/3=48 Hpo=(f2+f5+fs)/3=55 Heco=(fo+f4+fo)/3=57
L3 Haz=(ffs+fo)/3=61 Hpz=(f3tf6+f0)/3=48 Hes=(f3+f5+f>)/3=48
OED Results A3 B2 Cc2
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the definition of orthogonal array and factor analysis, which leads to a
comprehensive understanding of OL.

1) Orthogonal Array: First, we use ‘La(s*)’ to denote an array with s
levels per factor for k factors, and L and N respectively represent an
array and the total number of combinations. For example, in the
chemical reaction experiment given in Table 1 we define an array
Lo(3%) with 3 factors, 3 levels per factor, and 9 combinations, as
follows:

111
122
133
212
L3 =[2 2 3
231
313
321
13 3 2] a7

An Nxk array A is defined as an orthogonal array (OA) which has
index A with strength t on Os<t<k when each Nxt sub-array of A
contains all the combinations of t-tuple exactly A times as a row
(Hedayat, Sloane, & Stufken, 1999). Eq. (17) gives an example of a
9x3 OA with strength 2 and index 1. The reason why such OA is
strength 2 and index 1 is because tuples (1,1) (1,2) (1,3) (2,1) (2,2)
(2,3) (3,1) (3,2) (3,3) appear in any two columns one time. Note that an
array with strength 3 and index 1 yields the full 27 combinations of
triplets.

An OA is a predefined table for the OED method to work on. As
mentioned earlier, the benefit of utilizing OED is to obtain the best
combination by conducting only few experiments. The total nine
experiments specified by the Lo(3%) are presented in Table 2. For
instance, the first row is [1 1 1], which means that the factors A
(Temperature), B (Oxygen), and C (Water) are all designed to the first
level (80°, 90 cm®, and 5%, respectively). The last column shows the
results of the experiment for each combination.

2) Factor Analysis: Factor analysis (FA) is the tool to assess the effects
of each factor on the experimental results in order to determine the
best combination of levels. With all N cases of experimental results
of OA known, the FA is conducted to determine the best combina-
tion. The process of FA is described as:

To determine the effect of each level for each factor, Hpg is
evaluated as the average effect of level s (s = 1,2,3) for the k-th factor
(k = A’ B’ C)’

9

Z .f;1 X Znks
1

n=1
Hy=—F—"—

9
Z Znks
n=

where f;, is the experimental result of the n-th (n=1,2...,9) combination,
Znis 18 1 if in the n-th (n=1,2...,9) combination, the level of the k-th
factor (k= A, B, C) is s (s=1,2,3), otherwise is 0. For instance if we want
to evaluate the effect of level 1 in factor B (B1), by inspection from the
3-rd column of Table 2 we find that combinations Cb1, Cb4 and Cb7
involve all the experiments of level 1 for factor B, with the correspond-
ing experimental results f;=31, f,=53 and f>=57, and the average
effect Hp;=47. After computing the effect of all levels for each factor,
the most effective level for each factor can be determined by selecting
the highest quantity of Hy for each factor. The FA results can be found
in Table 2 and the details of FA are explained in (Zhan et al., 2011;
Zhang & Leung, 1999). From Table 2, the best combination deter-
mined by FA is (A3, B2, C2). Note that this combination (90 °C,
120 cm?®, 6%) is not one of the nine tested combinations. The OL will be
implemented in the ABC algorithm in order to obtain the best

(18)
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Initialize solution X b
(14) and evaluate
solutions

Select a random
index s
from[1...SN]

A

i+1

Generate No
transform vector
T; by(19) Generate new solution J;

for employed bees by (15)
and evaluate the solution

Apply OL to construct
solution ¥; by mixing vector
T, and X; and evaluate the I
solution

Apply greedy selection
process between X; and V;

Iter +1

Iter=

Yes

Calculate the probability values
p; for the solution

¥

Generate new solutions V; for
onlooker bees depending on p;, and
evaluate the solution

Apply greedy selection for the onlooker
bees between old solution X; and new
solution V;

Determine abandoned solution for scout
bees, replace it with a new random
solution, and evaluate the solution

Record best
solution

Iter >max?

No

Finish
Fig. 2. The overall structure of IABC.

candidate solution efficiently with few searching combinations by the
analogy of OED. However, there is no guarantee that OL can be fit for
any dimension of control variables problem because only fixed size of
orthogonal array can be generated.

3.3. Improved ABC with orthogonal learning

As mentioned previously, the original ABC has poor efficiency on
exploitation, and to overcome these issues, the OL strategy is proposed
to find an efficient candidate solution. Considering the aforementioned
discussion, the process of implementing OL into ABC is described
below. First, a transmission vector Ty is formed whenever the index i
(indicating the current solution index) is equal to a random integer s:



W. Bai et al.

Ty = X + rand (0, 1) X (Xpesr — Xi)
k+#s e[l SN] (19)
where Xpes; is the best individual which has the best fitness value in
current iteration, X is one of the SN feasible solutions different than
current solution X;. The best candidate solution Vg is formed by
combining the information of T and Xj; in other words, OL is applied
to predict the best candidate solution by combining T and X with few
tests as the analogy of the OED experiment in current iteration. It is
worthy to mention that OL is applied whenever the index i is equal to a
random integer s at each iteration; hence, OL has only been applied
once at each iteration to save computational cost. The overall structure
of the IABC algorithm is given in Fig. 2. The procedure of forming the
candidate solution Vg by OL is described after Fig. 2

An individual employed bee is randomly chosen to use OL strategy
to create a candidate solution, while other employed bees employ (15)
to generate a candidate solution. The idea of adopting OL is that we
want to formulate a solution vector by combining the good information
of every dimension of two solution vectors. Instead of conducting
exhaustive tests, OL is implemented to predict the best combination of
dimensions based on two candidate solutions. Construction of a
candidate solution Vy is summarized as following steps:

1) Generate a 2-level OA Ln(2%), with N=21109,P+D1  yhere N
denotes for the total combination numbers for an OA and D is the
dimension of the problem. (‘[ ]’ is the ceiling bracket, meaning
round the number to the integer closer to ). The reason why 2-
level OA is developed is because there are only two candidate
solutions (one is the current solution X, and the other one is the
transmission vector T) used for OL. Thus by choosing either level,
the values from vector X or T will be used to combine the best
solution.

Fill the OA La(2%) by the information of T and Xs. The OA is a 2
level, denoted by ‘1’ and 2" and D factors (control variables) OA,
and in such OA the value of T is chosen when the entry of OA is ‘1’,
and that of X is chosen otherwise.

Obtain N test solutions Z,, (1<n < N) with the corresponding value
of Ts (19) and X, according to a 2-level OA La(259).

Evaluate every test solution Z,, (1 <n<N), (Z,), and record the
best solution Z;, according to fitness values.

For each factor (control variable) conduct FA to obtain the best
level.

With the best levels determined in step (4), predict the best
combination solution Z,,, and evaluate Z,,.

If Z,, has better fitness value than Zj, it is adopted as the candidate
solution vector V.

2)

3)
4)
5)
6)

7)

The AC power flow was implemented in the project and was
calculated by Newton-Raphson method. Numerical solutions and
statistical analysis of different cases are presented as in the following
section.

4. Case studies

In order to verify the effectiveness of proposed algorithm, both
IABC and ABC were implemented in the modified IEEE 30 and 118 test
systems. The numerical results are assessed and comparison is made
with other modern heuristic methods. The computer used for simula-
tions work has 3.4 GHz Intel core i7 Processor and 8 GB RAM. The
power flow was calculated by MATPOWER package (Zimmerman,
Murillo-Sanchez, & Thomas, 2011). Four case studies are presented:
The first one is the benchmark case. The second one is for testing the
algorithm for a more complex model. The third one is the most typical
case in practice. The fourth one is also for verifying the algorithm
whether it can work on a large-scale system.
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Fig. 3. IEEE-30 bus system.

4.1. Casel: minimizing fuel cost for IEEE 30-bus system

Case 1 is the standard OPF problem with quadratic cost function.
Reference (Shoults & Sun, 1982) gives the data of IEEE 30-bus test
system, and control variables limits can be found from (Lee, Park, &
Ortiz, 1985). There are total 24 control variables which consist of five
real power output control at PV bus and voltage magnitudes control of
all six generator buses, nine shunt compensators control for injecting
reactive power and four transformer tap controls. The six generators
are shown in Fig. 2. Shunt compensators are installed on buses 10, 12,
15, 17, 20, 21, 23, 24 and 29. In addition, lines 4-12, 6-9, 6—10, and
28-27 are equipped with tap-changing transformers as shown in Fig. 3.
The system is at 100 MVA base with active power demand of 2.834 p.u.
and reactive power demand of 1.262 p.u. Fuel cost coefficients were
taken from (Lee et al., 1985).

The objective in this case is to minimize the total generator fuel cost
(4). The simulation was run 30 times in order to conduct statistical
analysis. The minimum total cost from IABC is 799.321 $/h, with the
maximum 799.322 $/h, the average 799.321 $/h, and zero standard
deviation. Results are compared with the results from other methods
such as basic ABC, gravitational search algorithm (GSA), linearly
decreasing inertia weight particle swarm optimization (LDI-PSO),
enhanced genetic algorithm (EGA), modified differential evolution
(MDE), and modified shuffle-frog leaping algorithm (MSFA)
(Bakirtzis et al., 2002; Duman, Giiven¢, Sonmez, & Yoriikeren,
2012; Khorsandi, Hosseinian, & Ghazanfari, 2013; Pan et al., 2011;
Sayah & Zehar, 2008). The comparison including execution time is
given in Table 3. Fig. 4 shows the convergence properties of ABC, and
IABC algorithms.

Table 3 shows that the IABC approach found the minimum solution
of 799.321 $/h, less than all other methods in the literature, and faster

Table 3
Comparison for fuel cost minimization in IEEE 30-bus system.

METHOD Fuel cost ($/h)

Min Avg. Max Std. Dev. t(s)

(0)
IABC 799.321 799.321 799.322 0.000 56.8
ABC 800.834 800.944 801.518 0.162 39.8
GSA (Duman et al., 2012) 805.175 812.194 827.459 N/A 10.8
LDI-PSO (Khorsandi et al., 800.734 801.557  803.869 N/A N/A
2013)

EGA (Bakirtzis et al., 2002) 802.060 N/A 802.140 N/A N/A
MDE (Sayah & Zehar, 2008) 802.376 802.382 802.404 N/A 23.3
MSFLA (Niknam, Narimani,  802.287 802.414 802.509 N/A N/A

Jabbari, & Malekpour,
2011)
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Fig. 4. Convergence performance in case 1 for IEEE-30 bus system.

Table 4

Comparison for valve-pont loading effect in IEEE 30-bus system.

Method Fuel cost ($/h)
Min Avg. Max Std. Dev. t (s)
(o)
IABC 918.167 919.567 921.458 0.662 96.2
ABC 945.450 960.565 973.599 8.547 74.6
GSA (Zhan and Leung, 929.724  930.925 932.049 N/A N/A
1999)
MDE (Karaboga et al., 930.793 942.501 954.073 N/A N/A
2007)
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Fig. 5. Convergence performance in Case 2 for IEEE-30 bus system.

Table 5
Comparison for Total power loss in IEEE 30-bus.

Method Total real power loss (MW)
Min Avg. Max Stand. Dev. t (s)
(o)
IABC 3.084 3.086 3.100 0.003 104.2
ABC 3.206 3.212 3.227 0.006 70.8
EGA (Bakirtzis et al., N/A 3.201 N/A N/A N/A
2002)
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Fig. 6. Convergence performance in Case 3 for IEEE-30 bus system.

convergence of IABC is demonstrated in Fig. 3. The standard deviation
can be omitted compared to other methods. It is worth mentioning that
for the standard quadratic fuel cost function, the improvement seems
not significant because the cost function is not complex enough to show
the improvement.

4.2. Case 2: fuel cost with valve-point effect

In this case, bus 1 and bus 2 have units with the fuel cost function
with valve-point effect (5). Table 4 gives the comparison with the
results obtained from other methods. Note that since this case is not a
typical bench mark problem, less studies are found for comparison. The
same issue applies to the remaining two cases. Fig. 5 gives the
convergence characteristics from the basic ABC and IABC method.

Simulation was run 30 times again for meaningful statistical
results. The maximum total fuel cost from IABC, the average and the
minimum cost are 921.458 $/h, 919.567 $/h, and 918.167 $/h
respectively and the standard deviation is 0.662 $/h. As shown in
Table 5, the IABC approach found the minimum solution of 918.167
$/h, less than all other methods in the literature, and better conver-
gence property is shown in Fig. 5. IABC proves to be more robust
because of the small standard deviation (Fig. 6).

4.3. Case 3: loss minimization for IEEE 30-bus system

The goal is to minimize the total real power loss as defined in (6).
The control and state variables are identical with the previous two cases
and the fuel cost function for this case is in the regular quadratic form.
The results are compared with original ABC and EGA from reference
(Bakirtzis et al., 2002).

The minimum total real power loss from IABC is 3.084 MW, the
average is 3.086 MW, the maximum is 3.100 MW and with the
standard deviation of 0.003. In this case the standard deviations for
both cases are small.

Table 6
Case 4 comparison.

Method Fuel cost ($/h)

Min Avg. Max Std. Dev. (o) t (s)

TIABC 129,862 129,895 129,941 40.8 4157.8
ABC 130,210 130,321 130,410 90.5 4037.5
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4.4. Case 4: minimizing fuel cost for IEEE 118-bus system

Assessing the developed algorithm on large-scale power system is
necessary to demonstrate its effectiveness and robustness. Thus, a
large-scale power system, IEEE-118-bus test system is adopted. For
this case, there are total 130 control variables including 9 transformer
tap controls, 14 shunt compensator controls, 53 real power output
controls and voltage magnitude control of all 54 generators buses. Note
that one of the generator bus is slack bus and thus is not considered as
control variable. Data for IEEE 118-bus system can be found in (Power
System Test Case Archive). The cost function is typical quadratic cost
by (4). The minimal cost found is 129,862 $/h. The IABC was
compared with regular ABC in Table 6. Fig. 7 gives the convergence
property.

From Table 6, the minimum, average and maximum cost found by
IABC are 129,862, 129,895 and 129.941 respectively. IABC simulation
has the standard deviation of 40.8 which is much less than the original
ABC. The IABC takes longer execution time than other methods,
because OL is implemented at each iteration to conduct deep search.
Parameters that used in all three cases have been specified in Table 7.

4.5. Statistical analysis

In order to draw convincing conclusions, statistical analysis over all
cases were conducted. Figs. 8—11 present the box plot for IABC and
ABC algorithms and Table 8 gives the one-tail paired t-test results.

The box plot for Case 1 showed the 1st quartile, median, 3rd
quartile, minimum and maximum values out of 30 simulation runs and
it is obvious that the results from IABC is very consistent (1st quartile,
median, 3rd quartile, minimum and maximum values are almost the
same number) and better fuel cost is found.

The same conclusion is drawn from Case 2 as it is from Casel:
optimization performance has less deviation and better fuel cost by
TIABC.

The box plots for Case 3 and Case 4 demonstrate the robustness and

Table 7
Algorithms parameters.
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Fig. 10. Box plot for case 3.

effectiveness of IABC algorithm because of its performance of smaller
deviation and cost values.

From the t-test, it is seen that the IABC outperforms ABC in all four
cases at 0.05 confidence level in terms of the total generation cost and

ABC IABC
Colony Size Food Number Limited Trials Max Cycles Colony Size Food Number Limited Trials Max Cycles
Case 1 100 50 100 400 100 50 100 400
Case 2 100 50 100 300 100 50 100 300
Case 3 100 50 100 400 100 50 100 400
Case 4 300 150 100 400 300 150 400 400
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Fig. 11. Box plot for case 4.
Table 8

Paired statistical T test for IABC and ABC.

Cases ABC IABC P-value

Best Avg. Best Avg.
1 800.834 800.944 799.321 799.321 5.20e-33
2 945.450 960.565 918.167 919.567 3.81e-18
3 3.206 3.212 3.084 3.086 5.79e-41
4 130,210 130,321 129,862 129,895 6.26e—23

power losses.

The null hypothesis (Hy) is defined as that there is no differences
between two algorithms and the alternative hypothesis (H;) is that the
performance of IABC is better than the original ABC. Since all the p-
values are smaller than 0.05, we can draw conclusion that there is
significant difference between two algorithms; in other words, Hy is
rejected and H; is accepted.

It is worth to point out that it takes longer time for running IABC,
because on employed bee deep search on solution space was performed
in order to find promising solution. Meanwhile the computing time is
not well reported for other techniques in the literature, thus making the
full comparison on computing time impossible. In order to reduce the
uncertainty of simulations, the focus can be put on choosing algorithm
parameters (the number of bees, the maximum trails number, etc.),
depending on different problems, if proper algorithm parameters are
determined the robustness will increase.

5. Conclusion

The paper proposed an improved ABC algorithm based on OL to
tackle the non-smooth, non-linear and non-convex OPF problem.
Orthogonal learning is implemented to predict the best combination
of two solution vectors based on limited trials instead of exhaustive
trials to conduct deep search in the solution space. Such a process
improved the exploitation of ABC and led to promising results. In order
to verify the effectiveness of proposed algorithm, IABC and basic ABC
were tested and the results were compared with other modern heuristic
methods. Better feasible solutions were found. For example, the cost
considering valve effect was reduced by 4.2%. Different case studies
and statistical analysis have demonstrated that the IABC is effective,
accurate and robust with better optimization performance. In addition,
IABC can be applied to large-scale power systems. It is obvious that in
order to gain better solution, longer computation time is required;
however the computational burden can be further reduced with the
help of parallel computing. Future work can focus on extending the
applications of IABC in power system such as optimizing the placement
of distributed generators.
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